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Dynamic Pricing; A Learning Approach

Abstract

We present an optimization approach for jointly learning the demand as a function

of price, and dynamically setting prices of products in an oligopoly environment in order

to maximize expected revenue. The models we consider do not assume that the demand

as a function of price is known in advance, but rather assume parametric families of

demand functions that are learned over time. We first consider the noncompetitive

case and present dynamic programming algorithms of increasing computational inten-

sity with incomplete state information for jointly estimating the demand and setting

prices as time evolves. Our computational results suggest that dynamic programming

based methods outperform myopic policies often significantly. We then extend our anal-

ysis in a competitive environment with two firms. We introduce a more sophisticated

model of demand learning, in which the price elasticities are slowly varying functions

of time, and allows for increased flexibility in the modeling of the demand. We pro-

pose methods based on optimization for jointly estimating the Firm’s own demand, its

competitor’s demand, and setting prices. In preliminary computational work, we found

that optimization based pricing methods offer increased expected revenue for a firm

independently of the policy the competitor firm is following.
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1 Introduction

In this paper we study pricing mechanisms for firms competing for the same products in

a dynamic environment. Pricing theory has been extensively studied by researchers from

a variety of fields over the years. These fields include, among others, economics (see for

example, [36]), marketing (see for example, [25]), revenue management (see for example,

[27]) and telecommunications (see for example, [21], [22], [29], [32], [33]). In recent years,

the rapid development of information technology, the Internet and E-commerce has had

very strong influence on the development of pricing and revenue management.

The overall goal of this paper is to address the problem of setting prices for a firm in

both noncompetitive and competitive environments, in which the demand as a function of

price is not known, but is learned over time. A firm produces a number of products which

require (and compete for in the competitive case) scarce resources. The products must be

priced dynamically over a finite time horizon, and sold to the appropriate demand. Our

research (contrasted with traditional revenue management) considers pricing decisions, and

takes capacity as given.

Problem Characteristics

The pricing problem we will focus on in this paper has a number of characteristics:

(a) The demand as a function of price is unknown a priori and is learned over time. As

a result, part of the model we develop in this paper deals with learning the demand

as the firm acquires more information over time. That is, we exploit the fact that

over time firms are able to acquire knowledge regarding demand behavior that can be

utilized to improve profitability. Much of the current research does not consider this

aspect but rather considers demand to be an exogenous stochastic process following a

certain distribution. See [7], [8], [10], [11], [16], [17], [19], [29].

(b) Products are priced dynamically over a finite time horizon. This is an important aspect

since the demand and the data of the problem evolve dynamically. There exists a great

deal of research that does not consider the dynamic and the competitive aspects of
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the pricing problem jointly. An exception to this involves some work that applies

differential game theory (see [1], [2], [9]).

(c) We explicitly allow competition in an oligopolistic market, that is, a market character-

ized by a few firms on the supply side, and a large number of buyers on the demand

side. A key feature of such a market (in contrast to a monopoly) is that the profit one

firm receives depends not just on the prices it sets, but also on the prices set by the

competing firms. That is, there is no perfect competition in an oligopolistic market

since decisions made by all the firms in the market impact the profits received by each

firm. One can consider a cooperative oligopoly (where firms collude) or a noncooper-

ative oligopoly. In this paper we focus on the latter. The theory of oligopoly dates

back to the work of Augustin Cournot [12], [13], [14].

(d) We consider products that are perishable, that is, there is a finite horizon to sell

the products, after which any unused capacity is lost. Moreover, the marginal cost

of an extra unit of demand is relatively small. For this reason, our models in this

paper ignore the cost component in the decision-making process and refer to revenue

maximization rather than profit maximization.

Application Areas

There are many markets where the framework we consider in this paper applies. Exam-

ples include airline ticket pricing. In this market the products the consumers demand, are

the origin-destination (O-D) pairs during a particular time window. The resources are the

flight legs (more appropriately seats on a particular flight leg) which have limited capacity.

There is a finite horizon to sell the products, after which any unused capacity is lost (per-

ishable products). The airlines compete with one another for the product demand which

is of stochastic nature. Other industries sharing the same features include the service in-

dustry (for example, hotels, car rentals, and cruise-lines), the retail industry (for example,

department stores) and finally, pricing in an e-commerce environment. All these industries

attempt to intelligently match capacity with demand via revenue management. A review
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of the huge literature in revenue management can be found in [27], [34] and [35].

Contributions

(a) We develop pricing mechanisms when there is incomplete demand information, by

jointly setting prices and learning the firm’s demand without assuming any knowledge

of it in advance.

(b) We introduce a model of demand learning, in which the price elasticities are slowly

varying functions of time. This model allows for increased flexibility in the modeling

of the demand. We propose methods based on optimization for jointly estimating the

Firm’s own demand, its competitor’s demand, and setting prices.

Structure

The remainder of this paper is organized as follows. In Section 2, we focus on the dynamic

pricing problem in a non-competitive environment. We consider jointly the problem of

demand estimation and pricing using ideas from dynamic programming with incomplete

state information. We present an exact algorithm as well as several heuristic algorithms

that are easy to implement and discuss the various resulting pricing policies. In Section 3,

we extend our previous model to also incorporate the aspect of competition. We propose

an optimization approach to perform the firm’s own demand estimation, its competitor’s

price prediction and finally its own price setting. Finally, in Section 4, we conclude with

conclusions and open questions.

2 Pricing in a Noncompetitive Environment

In this section we consider the dynamic pricing problem in a non-competitive environment.

We focus on a market with a single product and a single firm with overall capacity c over

a time horizon T . In the beginning of each period t, the firm knows the previous price and

demand realizations, that is, d1, . . . , dt−1 and p1, . . . , pt−1. This is the data available to the
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firm. In this section, we assume that the firm’s true demand is an unknown linear function

of the form

dt = β0 + β1pt + εt,

that is, it depends on the current period prices pt, unknown parameters β0, β1 and a

random noise εt ∼ N(0, σ2). The firm’s objectives are to estimate its demand dynamically

and set prices in order to maximize its total expected revenue. Let P =[pmin, pmax] be the

set of feasible prices.

This section is organized as follows. In Section 2.1 we present a demand estimation

model. In Section 2.2, we consider the joint demand estimation and pricing problem through

a dynamic programming formulation. Using ideas from dynamic programming with incom-

plete state information, we are able to reduce this dynamic programming formulation to

an eight-dimensional one. Nevertheless, this formulation is still difficult to solve, and we

propose an approximation that allows us to further reduce the problem to a five dimensional

dynamic program. In Section 2.3 we separate the demand estimation from the pricing prob-

lem and consider several heuristic algorithms. In particular, we consider a one-dimensional

dynamic programming heuristic as well as a myopic policy heuristic. To gain intuition, we

find closed form solutions in the deterministic case. Finally, in Section 2.4 we consider some

examples and offer insights.

2.1 Demand Estimation

As we mentioned at time t the firm has observed the previous price and demand realizations,

that is, d1, . . . , dt−1 and p1, . . . , pt−1 and assumes a linear demand model dt = β0+β1pt+εt,

with εt ∼ N(0, σ2). The parameters β0, β1 and σ are unknown and are estimated as follows.

We denote by xs = [1, ps]′ and by β̂s the vector of the parameter estimates at time

s, (β̂0
s , β̂1

s ). We estimate this vector of the demand parameters through the solution of the

least square problem,

β̂t = arg min
r∈�2

t−1∑
s=1

(ds − x′
sr)

2, t = 3, . . . , T. (1)
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Proposition 1 : The least squares estimates (1) can be generated by the following iterative

process

β̂t = β̂t−1 + H−1
t−1xt−1

(
dt−1 − x′

t−1β̂t−1

)
, t = 3, . . . , T

where β̂2 is an arbitrary vector, and the matrices Ht−1 are generated by

Ht−1 = Ht−2 + xt−1x′
t−1, t = 3, . . . , T,

with H1 =

⎡⎢⎣ 1 p1

p1 p2
1

⎤⎥⎦. Therefore, Ht−1 =

⎡⎢⎢⎣ t − 1
t−1∑
s=1

ps

t−1∑
s=1

ps

t−1∑
s=1

p2
s

⎤⎥⎥⎦ .

Proof: The first order conditions of the least squares problem for β̂t and β̂t−1 respectively,

imply that

t−1∑
s=1

(
ds − x′

sβ̂t

)
xs = 0 (2)

t−2∑
s=1

(
ds − x′

sβ̂t−1

)
xs = 0. (3)

If we write, β̂t = β̂t−1 + a, where a is some vector, it follows from (2) that

t−1∑
s=1

(
ds − x′

sβ̂t−1 − x′
sa
)
xs = 0.

This in turn implies that,

t−2∑
s=1

(
ds − x′

sβ̂t−1 − x′
sa
)
xs +

(
dt−1 − x′

t−1β̂t−1 − x′
t−1a

)
xt−1 = 0. (4)

Subtracting (3) from (4) we obtain that

t−1∑
s=1

(
x′

sa
)
xs =

(
dt−1 − x′

t−1β̂t−1

)
xt−1.

Therefore, a = H−1
t−1xt−1

(
dt−1 − x′

t−1β̂t−1

)
, with Ht−1 =

∑t−1
s=1 (xsx′

s) =

⎡⎢⎢⎣ t − 1
t−1∑
s=1

ps

t−1∑
s=1

ps

t−1∑
s=1

p2
s

⎤⎥⎥⎦ .
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Given d1, . . . , dt−1 and p1, . . . , pt−1, the least squares estimates are

β̂1
t =

(t − 1)
t−1∑
s=1

psds −
t−1∑
s=1

ps

t−1∑
s=1

ds

(t − 1)
t−1∑
s=1

p2
s −

( t−1∑
s=1

ps

)2
, β̂0

t =

t−1∑
s=1

ds

t − 1
− β̂1

t

t−1∑
s=1

ps

t − 1
.

The matrix Ht−1 is singular, and hence not invertible, when

t
t−1∑
s=1

p2
s =

(
t−1∑
s=1

ps

)2

. (5)

Notice that the only solution to the above equality is p1 = p2 = · · · = pt−1. If the matrix

Ht−1 is nonsingular, then the inverse is

H−1
t−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t−1∑
s=1

p2
s

(t−1)
t−1∑
s=1

p2
s−
(

t−1∑
s=1

ps

)2

−
t−1∑
s=1

ps

(t−1)
t−1∑
s=1

p2
s−
(

t−1∑
s=1

ps

)2

−
t−1∑
s=1

ps

(t−1)
t−1∑
s=1

p2
s−
(

t−1∑
s=1

ps

)2
t−1

(t−1)
t−1∑
s=1

p2
s−
(

t−1∑
s=1

ps

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore,

H−1
t−1xt−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t−1∑
s=1

p2
s

(t−1)
t−1∑
s=1

p2
s−
(

t−1∑
s=1

ps

)2

−
t−1∑
s=1

ps

(t−1)
t−1∑
s=1

p2
s−
(

t−1∑
s=1

ps

)2

−
t−1∑
s=1

ps

(t−1)
t−1∑
s=1

p2
s−
(

t−1∑
s=1

ps

)2
t−1

(t−1)
t−1∑
s=1

p2
s−
(

t−1∑
s=1

ps

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣ 1

pt−1

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t−2∑
s=1

p2
s−pt−1

t−2∑
s=1

ps

(t−1)
t−1∑
s=1

p2
s−
(

t−1∑
s=1

ps

)2

(t−2)pt−1−
t−2∑
s=1

ps

(t−1)
t−1∑
s=1

p2
s−
(

t−1∑
s=1

ps

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

As a result, we can express the estimates of the demand parameters in period t in terms of

earlier estimates as

⎡⎢⎣ β̂0
t

β̂1
t

⎤⎥⎦ =

⎡⎢⎣ β̂0
t−1

β̂1
t−1

⎤⎥⎦+ (dt−1 − β̂0
t−1 − β̂1

t−1pt−1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t−2∑
s=1

p2
s−pt−1

t−2∑
s=1

ps

(t−1)
t−1∑
s=1

p2
s−
(

t−1∑
s=1

ps

)2

(t−2)pt−1−
t−2∑
s=1

ps

(t−1)
t−1∑
s=1

p2
s−
(

t−1∑
s=1

ps

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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The estimate for the variance σ at time t is given by

σ̂2
t =

t−1∑
τ=1

(
dτ − β̂0

t − β̂1
t pτ

)2

t − 3
.

Notice that the variance estimate is based on t − 1 pieces of data, with two parameters

already estimated from the data, hence there are t−3 degrees of freedom. Such an estimate

is unbiased (see [30]).

2.2 An Eight-Dimensional DP for Determining Pricing Policies

The difficulty in coming up with a general framework for dynamically determining prices

is that the parameters β0 and β1 of the true demand are not directly observable. What is

observable though are the realizations of demand and price in the previous periods, that

is, d1, ..., dt−1 and p1, ..., pt−1. This seems to suggest that ideas from dynamic program-

ming with incomplete state information may be useful (see [3]). As a first step in this

direction, during the current period t, we consider a dynamic program with state space

(d1, ..., dt−1, p1, ..., pt−1, ct), control variable the current price pt and randomness coming

from the noise εt. We observe though that as time t increases, the dimension of the state

space becomes huge and therefore, solving this dynamic programming formulation is not

possible. In what follows we will illustrate that we can considerably reduce the high dimen-

sionality of the state space.

First we introduce the notation, β̂s,t =
(
β̂0

s,t, β̂1
s,t

)
, s = t, . . . , T, which is the current

time t estimate of the parameters for future times s = t, . . . , T . Notice that β̂t,t = β̂t.

Similarly to Proposition 1, we can update our least squares estimates through β̂t+1,t =

β̂t,t + H−1
t xt

(
D̂t − x′

tβ̂t,t

)
. Notice that since in the beginning of period t demand dt is not

known, we replaced it with D̂t = β̂0
t + β̂1

t pt + εt. As a result, vector β̂t+1,t is a random

variable. A useful observation we need to make is that in order to calculate matrix Ht we

need to keep track of the quantities
t−1∑
τ=1

p2
τ and

t−1∑
τ=1

pτ . These will be as a result part of the

state space in the new dynamic programming formulation.

It is natural to assume that the variance estimates change with time and do not remain

constant in future periods. This is the case since the estimate of the variance will be affected
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by the prices. That is,

εs ∼ N
(
0, σ̂2

s

)

σ̂2
s =

s−1∑
τ=1

(
dτ − β̂0

s − β̂1
spτ

)2

s − 3
, s = t, . . . , T.

This observation implies that we need to find a way to estimate the variance for the future

periods from the current one. We denote by σ̂2
t+1, t the estimate (in the current period, t)

of next period’s variance.

Proposition 2 : The estimate of next period’s variance in the current period t is given by,

σ̂2
t+1, t =

σ̂2
t (t − 3) + 2β̂0

t

t−1∑
s=1

ds + 2β̂1
t

t−1∑
s=1

dsps − (t − 1)
(
β̂0

t

)2 − 2β̂0
t β̂1

t

t−1∑
s=1

ps −
(
β̂1

t

)2 t−1∑
s=1

p2
s

t − 2
+

(6)(
β̂0

t

)2
+
(
β̂1

t pt

)2
+ ε2

t + 2β̂0
t β̂1

t pt + 2β̂0
t εt + 2β̂1

t ptεt − 2β̂0
t+1

t−1∑
s=1

ds

t − 2
+

−2β̂0
t+1β̂

0
t − 2β̂0

t+1β̂
1
t pt − 2β̂0

t+1εt − 2β̂1
t+1

t−1∑
s=1

psds

t − 2
+

−2β̂1
t+1β̂

0
t pt − 2β̂1

t+1β̂
1
t p2

t − 2β̂1
t+1ptεt + t

(
β̂0

t+1

)2

t − 2
+

2β̂0
t+1β̂

1
t+1

t−1∑
s=1

ps + 2β̂0
t+1β̂

1
t+1pt +

(
β̂1

t+1

)2 t−1∑
s=1

p2
s +

(
β̂1

t+1

)2
p2

t

t − 2
.

Proof: As a first step we relate quantities σ̂2
t =

t−1∑
s=1

(
ds−β̂0

t −β̂1
t ps

)2
t−3 with σ̂2

t+1 =

t∑
s=1

(
ds−β̂0

t+1−β̂1
t+1ps

)2
t−2 .

By expanding the second equation and separating the period t terms from the previous pe-

riod t − 1 we obtain

σ̂2
t+1 =

t−1∑
s=1

d2
s + d2

t − 2β̂0
t+1

t−1∑
s=1

ds − 2β̂0
t+1dt − 2β̂1

t+1

t−1∑
s=1

psds − 2β̂1
t+1ptdt

t − 2
+ (7)

t
(
β̂0

t+1

)2
+ 2β̂0

t+1β̂
1
t+1

t−1∑
s=1

ps + 2β̂0
t+1β̂

1
t+1pt +

(
β̂1

t+1

)2 t−1∑
s=1

p2
s +

(
β̂1

t+1

)2
p2

t

t − 2
.
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Recall that σ̂2
t =

t−1∑
s=1

(
ds−β̂0

t −β̂1
t ps

)2
t−3 . This gives rise to,

t−1∑
s=1

d2
s = σ̂2

t (t − 3) + 2β̂0
t

t−1∑
s=1

ds + 2β̂1
t

t−1∑
s=1

dsps − (t − 1)
(
β̂0

t

)2
(8)

−2β̂0
t β̂1

t

t−1∑
s=1

ps −
(
β̂1

t

)2
t−1∑
s=1

p2
s.

We substitute (8) into (7) to obtain

σ̂2
t+1 =

σ̂2
t (t − 3) + 2β̂0

t

t−1∑
s=1

ds + 2β̂1
t

t−1∑
s=1

dsps − (t − 1)
(
β̂0

t

)2 − 2β̂0
t β̂1

t

t−1∑
s=1

ps −
(
β̂1

t

)2 t−1∑
s=1

p2
s

t − 2
+

d2
t − 2β̂0

t+1

t−1∑
s=1

ds − 2β̂0
t+1dt − 2β̂1

t+1

t−1∑
s=1

psds − 2β̂1
t+1ptdt + t

(
β̂0

t+1

)2

t − 2
+

2β̂0
t+1β̂

1
t+1

t−1∑
s=1

ps + 2β̂0
t+1β̂

1
t+1pt +

(
β̂1

t+1

)2 t−1∑
s=1

p2
s +

(
β̂1

t+1

)2
p2

t

t − 2
.

Nevertheless, in the beginning of period t, dt is not known. Therefore, we replace in the

previous equation, each occurrence of dt with D̂t = β̂0
t + β̂1

t pt +εt. This leads us to conclude

that

σ̂2
t+1, t =

σ̂2
t (t − 3) + 2β̂0

t

t−1∑
s=1

ds + 2β̂1
t

t−1∑
s=1

dsps − (t − 1)
(
β̂0

t

)2 − 2β̂0
t β̂1

t

t−1∑
s=1

ps −
(
β̂1

t

)2 t−1∑
s=1

p2
s

t − 2
+

(
β̂0

t

)2
+
(
β̂1

t pt

)2
+ ε2

t + 2β̂0
t β̂1

t pt + 2β̂0
t εt + 2β̂1

t ptεt − 2β̂0
t+1

t−1∑
s=1

ds

t − 2
+

−2β̂0
t+1β̂

0
t − 2β̂0

t+1β̂
1
t pt − 2β̂0

t+1εt − 2β̂1
t+1

t−1∑
s=1

psds − 2β̂1
t+1β̂

0
t pt − 2β̂1

t+1β̂
1
t p2

t − 2β̂1
t+1ptεt + t

(
β̂0

t+1

)2

t − 2
+

2β̂0
t+1β̂

1
t+1

t−1∑
s=1

ps + 2β̂0
t+1β̂

1
t+1pt +

(
β̂1

t+1

)2 t−1∑
s=1

p2
s +

(
β̂1

t+1

)2
p2

t

t − 2
.
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This proposition suggests that in order to estimate the next period variance from the

current one, we need to keep track of the following quantities

β̂0
t , β̂1

t ,
t−1∑
τ=1

p2
τ ,

t−1∑
τ=1

pτ ,
t−1∑
τ=1

pτdτ ,
t−1∑
τ=1

dτ , σ̂2
t .

This observation allows us to provide an eight-dimensional dynamic programming formula-

tion with state space given by,(
cs, β̂0

s , β̂1
s ,

s−1∑
τ=1

p2
τ ,

s−1∑
τ=1

pτ ,
s−1∑
τ=1

pτdτ ,
s−1∑
τ=1

dτ , σ̂2
s

)
, s = t, . . . , T.

We are now able to formulate the following dynamic program where the control is the

price and the randomness is the noise.

An Eight-Dimensional DP Pricing Policy

JT (cT , β̂0
T , β̂1

T , σ̂2
T ) = max

pT
EεT

[
pT min

{(
β̂0

T + β̂1
T pT + εT

)+
, cT

}]

for s = max {3, t} , . . . , T − 1

Js(cs, β̂0
s , β̂1

s ,
s−1∑
τ=1

p2
τ ,

s−1∑
τ=1

pτ ,
s−1∑
τ=1

pτdτ ,
s−1∑
τ=1

dτ , σ̂2
s)

= max
ps

Eεs [ps min
{(

β̂0
s + β̂1

sps + εs

)+
, cs

}

+Js+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cs − min
{(

β̂0
s + β̂1

sps + εs

)+
, cs

}
,

β̂0
s+1, β̂1

s+1,
s−1∑
τ=1

p2
τ + p2

s,
s−1∑
τ=1

pτ + ps,

s−1∑
τ=1

pτdτ + ps

(
β̂0

s + β̂1
sps + εs

)+

s−1∑
τ=1

dτ +
(
β̂0

s + β̂1
sps + εs

)+
,

σ̂2
s+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

],

12



where

⎡⎢⎣ β̂0
s+1

β̂1
s+1

⎤⎥⎦ =

⎡⎢⎣ β̂0
s

β̂1
s

⎤⎥⎦+ εs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s−1∑
τ=1

p2
τ−ps

s−1∑
τ=1

pτ

s
s−1∑
τ=1

p2
τ +sp2

s−
(

s−1∑
τ=1

pτ+ps

)2

(s−1)ps−
s−1∑
τ=1

pτ

s
s−1∑
τ=1

p2
τ +sp2

s−
(

s−1∑
τ=1

pτ+ps

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with noise εs ∼ N(0, σ̂2
s) and variance σ̂2

s given from the recursive formula in (6).

Notice that in the DP recursion s is ranging from max {3, t} to T − 1. This is because

in the expression for σ̂2
s+2 we divide by s− 2. Intuitively, we need at least three data points

in order to estimate three parameters. When t = 1, the denominator in the expression for

σ̂2
t+1 should also be one, while when t = 2 the denominator can be chosen to be either one

or two.

2.3 A Five-Dimensional DP for Determining Pricing Policies

Although the previous DP formulation is the correct framework for determining pricing

policies, it has an eight-dimensional state space which makes the problem computationally

intractable. For this reason we consider in this section an approximation that gives rise

to a lower dimensional dynamic program that is computationally tractable. In particular,

we relax the assumption that the noise at time t changes in time and is affected by future

pricing decisions. In particular, we consider

εs ∼ N
(
0, σ̂2

t

)
, s = t, . . . , T

σ̂2
t =

t−1∑
τ=1

(
dτ − β̂0

t − β̂1
t pτ

)2

t − 3
.

Moreover, as in the previous section

β̂t+1,t = β̂t,t + H−1
t xt

(
d̂t − x′

tβ̂t,t

)
.

To calculate the matrix Ht we need to keep track of the quantities
t−1∑
τ=1

p2
τ and

t−1∑
τ=1

pτ .

13



This gives rise to a dynamic programming formulation with state variables,(
cs, β̂0

s , β̂1
s ,

s−1∑
τ=1

p2
τ ,

s−1∑
τ=1

pτ

)
s = t, . . . , T. (9)

A Five-Dimensional DP Pricing Policy

JT

(
cT , β̂0

T , β̂1
T

)
= max

pT ∈P
EεT

[
pT min

{(
β̂0

T + β̂1
T pT + εT

)+
, cT

}]
for s = t, . . . , T − 1 :

Js

(
cs, β̂0

s , β̂1
s ,

s−1∑
τ=1

p2
τ ,

s−1∑
τ=1

pτ

)
= max

ps∈P
Eεs [ps min

{(
β̂0

s + β̂1
sps + εs

)+
, cs

}

+Js+1

⎛⎜⎜⎜⎜⎜⎝
cs − min

{(
β̂0

s + β̂1
sps + εs

)+
, cs

}
,

β̂0
s+1, β̂1

s+1,
s−1∑
τ=1

p2
τ + p2

t ,
s−1∑
τ=1

pτ + pt

⎞⎟⎟⎟⎟⎟⎠ ],

with

⎡⎢⎣ β̂0
s+1

β̂1
s+1

⎤⎥⎦ =

⎡⎢⎣ β̂0
s

β̂1
s

⎤⎥⎦+ εs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s−1∑
τ=1

p2
τ−ps

s−1∑
τ=1

pτ

s
s−1∑
τ=1

p2
τ +sp2

s−
(

s−1∑
τ=1

pτ+ps

)2

(s−1)ps−
s−1∑
τ=1

pτ

s
s−1∑
τ=1

p2
τ +sp2

s−
(

s−1∑
τ=1

pτ+ps

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

2.4 Pricing Heuristics

In the previous two subsections we considered two dynamic programming formulations for

determining pricing policies. The first was an exact formulation with an eight-dimensional

state space that was computationally intractable, while the second was an approximation

with a five-dimensional state space that is more tractable. Nevertheless, although this latter

approach is tractable it is still fairly complex to solve. Both of these formulations were based

on the idea of performing jointly the demand estimation with the pricing problem. In this

section, we consider two heuristics that are approximations but yet are computationally

very easy to perform. They are based on the idea of separating the demand estimation

from the pricing problem.
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One-Dimensional DP Pricing Policy

In the beginning of period t, the firm computes the estimates β̂0
t and β̂1

t and solves a one-

dimensional dynamic program assuming that these parameter estimates are valid over all

future periods. That is, this heuristic approach ignores the fact that these estimates will in

fact be affected by the current pricing decisions. In particular,

d̂s = β̂0
t + β̂1

t ps + εs, s = t, . . . , T

εs ∼ N
(
0, σ̂2

t

)
, s = t, . . . , T,

with

σ̂2
t =

t−1∑
s=1

(
ds − β̂0

t − β̂1
t ps

)2

t − 3
.

Subsequently, the firm solves the following dynamic program in the beginning of period t

(t = 1, . . . , T ),

JT (cT ) = max
pT∈P

EεT

[
pT min

{(
β̂0

t + β̂1
t pT + εT

)+
, cT

}]
for s = t, . . . , T − 1 :

Js(cs) = max
ps∈P

Eεs

⎡⎢⎢⎣ ps min
{(

β̂0
t + β̂1

t ps + εs

)+
, cs

}
+

Js+1

(
cs − min

{(
β̂0

t + β̂1
t ps + εs

)+
, cs

})
⎤⎥⎥⎦ .

In this dynamic programming formulation the remaining capacity represents the state space,

the prices are the controls and the randomness comes from the noise.

Deterministic One-Dimensional DP Policy

To gain some intuition, in what follows we examine the deterministic case (that is, when

the noise εs = 0). As a result, after having computed the estimates β̂0
t and β̂1

t , the firm

solves the following DP in the beginning of period t (t = 1, . . . , T ),

JT (cT ) = max
pT ∈P

pT min
{(

β̂0
t + β̂1

t pT

)+
, cT

}
for s = t, . . . , T − 1 :
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Js(cs) = max
ps∈P

ps min
{(

β̂0
t + β̂1

t ps

)+
, cs

}
+Js+1

(
cs − min

{(
β̂0

t + β̂1
t ps

)+
, cs

})
.

This deterministic one-dimensional DP policy has a closed form solution. We establish

its solution in two parts. Since the dynamic program is deterministic, an optimal solution

is given by an open-loop policy (that is, we can solve for an optimal price path versus an

optimal pricing policy, i.e. there is no dependence on the state). For the proofs that follow,

we need to introduce the following definition.

Definition 1 A price vector p = (pt, . . . , pT )′ leads to premature stock-out if

T∑
s=t

(
β̂0

t + β̂1
t ps

)
> ct.

Lemma 1 The optimal solution given by the one-dimensional DP is unique and satisfies

pt = · · · = pT .

Proof: First we will show that any optimal solution must satisfy pt = · · · = pT , then we

will prove uniqueness. Suppose there exists an optimal solution p∗ for which the above does

not hold. Then at least two of the prices are different and at least one price is less than

pmax. Without loss of generality, assume that pt �= pt+1 (the argument holds for any two

prices). We will show that such a solution cannot be optimal. Next we will show that the

optimal solution must satisfy,

T∑
s=t

d̂s =
T∑

s=t

(
β̂0

t + β̂1
t p∗s
)
≤ ct.

This is true since otherwise we could increase at least one of the prices by a small

amount (since at least one is strictly less than pmax), and achieve greater revenue by selling

the same number of units ct at a slightly higher average price (contradicting the optimality

of the solution). Therefore, the firm does not expect a premature stock-out and the optimal

objective value is given by, z∗ =
T∑

s=t
p∗s
(
β̂0

t + β̂1
t p∗s
)

. Notice that the revenue generated in
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periods t and t + 1 is given by,

p∗t
(
β̂0

t + β̂1
t p∗t
)

+ p∗t+1

(
β̂0

t + β̂1
t p∗t+1

)
= β̂0

t p∗t + β̂0
t p∗t+1 + β̂1

t

(
(p∗t )

2 +
(
p∗t+1

)2)
. (10)

In what follows, consider setting price
p∗t +p∗t+1

2 in periods t and t+1. Therefore, the revenue

generated in periods t and t + 1 is given by,

β̂0
t p∗t + β̂0

t p∗t+1 +
β̂1

t

2
(
p∗t + p∗t+1

)2
. (11)

Comparing (11) with (10) we notice that the total revenue has been increased. This is

a contradiction. Hence, any optimal solution must satisfy pt = · · · = pT .

Next we demonstrate uniqueness. Suppose there exist two optimal solutions p1 and p2

of dimension T − t + 1, where p1 =
(
p1, . . . , p1

)
, p2 =

(
p2, . . . , p2

)
.

We consider three possibilities. First suppose that both price vectors lead to premature

stock-out. The respective revenues are given by ctp
1 and ctp

2. Since p1 �= p2, it follows that

ctp
1 �= ctp

2, (since ct > 0). Therefore, it cannot be the case that both p1 and p2 are optimal

(which is a contradiction).

Next suppose that exactly one price vector, say p1, leads to premature stock-out. We

know that for such a price vector to be optimal it must be the case that p1 = pmax, since

otherwise we could increase p1 by a small amount and improve the objective. Moreover,

p2 < pmax (since p2 �= p1). Therefore p2 also leads to premature stock out (contradicting

the assumption that exactly one price vector leads to premature stock-out).

Finally suppose that neither price vector leads to premature stock-out. In this case,

the respective revenue (objective) is given by,

z1 = p1
(
β̂0

t + β̂1
t p1
)

(T − t + 1) , z2 = z1 = p2
(
β̂0

t + β̂1
t p2
)

(T − t + 1) .

Consider the price vector p′ (of dimension T − t + 1) with each component given by,
p1+p2

2 . Since p1 and p2 do not lead to premature stock-out, neither does p′. In which case

the revenue is given by,

z′ =
p1 + p2

2

(
β̂0

t + β̂1
t

p1 + p2

2

)
(T − t + 1) .
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After some algebra (and since z2 = z1) we find that, z′ = z1 − β̂1
t
4

(
p1 − p2

)2 (T − t + 1) .

Notice that z′ > z1. Therefore, p1 and p2 cannot be optimal (contradiction). Hence, the

optimal solution is unique.

We use this result to prove the following theorem.

Theorem 2 Under the assumption that β̂0
t + β̂1

t pmax > 0 (that is, demand cannot be neg-

ative), in the deterministic case the one-dimensional DP offers the following closed form

solution

p∗s = max

{
− β̂0

t

2β̂1
t

,
ct − (T − t + 1) β̂0

t

(T − t + 1) β̂1
t

}
s = t, . . . , T.

However, if the above solution exceeds pmax then p∗s = pmax, while if the above solution

is less than pmin then p∗s = pmin.

Proof: Consider the following price, p1 = arg maxp∈P p
(
β̂0

t + β̂1
t p
)

. Notice that since

β̂1
t < 0 and the price set is continuous,

p1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− β̂0

t

2β̂1
t

if pmin ≤ − β̂0
t

2β̂1
t

≤ pmax

pmin if − β̂0
t

2β̂1
t

< pmin

pmax if − β̂0
t

2β̂1
t

> pmax

The objective value z (total revenue) is the sum of each period’s revenue. Letting zs

denote the revenue from period s, implies that zs ≤ p1
(
β̂0

t + β̂1
t p1
)

, for all s = t, . . . ,T.

Therefore, the total revenue is bounded, z ≤ p1
(
β̂0

t + β̂1
t p1
)

(T − t + 1) . We consider three

cases:

CASE 1: Suppose that
(
β̂0

t + β̂1
t p1
)

(T − t + 1) ≤ ct. In this case the firm could set the

price p1 over each period and achieve revenue p1
(
β̂0

t + β̂1
t p1
)

(T − t + 1) . Therefore, the

objective’s upper bound has been achieved and hence the solution (p1, . . . , p1) is optimal.

CASE 2: Suppose that
(
β̂0

t + β̂1
t pmax

)
(T − t + 1) > ct. In this case the solution (pmax, . . . , pmax)

has an associated objective value of ctpmax, which is clearly an upper bound on the objec-

tive. Therefore the solution (pmax, . . . , pmax) is optimal.

CASE 3: Suppose that
(
β̂0

t + β̂1
t p1
)

(T − t + 1) > ct and
(
β̂0

t + β̂1
t pmax

)
(T − t + 1) ≤ ct.
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In this case the solution (p1, . . . , p1) cannot be optimal, since we could then increase at least

one of the prices by a small amount (p1 < pmax), and achieve greater revenue by selling the

same number of units ct at a slightly higher average price. However, the previous lemma

suggests that the unique optimal solution (of dimension T − t + 1) has constant prices

p∗ = (p∗, . . . , p∗) . Furthermore, we know that
(
β̂0

t + β̂1
t p∗
)

(T − t + 1) ≤ ct. Otherwise, as

before, we could increase p∗ by a small amount and achieve greater revenue by selling the

same number of units ct at a slightly higher price. Since,

(
β̂0

t + β̂1
t p1
)

(T − t + 1) > ct and
(
β̂0

t + β̂1
t pmax

)
(T − t + 1) ≤ ct,

there exists a price p′ such that p1 < p′ ≤ pmax and
(
β̂0

t + β̂1
t p′
)

(T − t + 1) = ct.

Intuitively, this is the price which will sell off exactly all of the firm’s remaining inventory

at the end of the horizon. Now consider the objective function as a function of the static

price p. For pmin < p < p′ the objective is given by ctp (since the firm stocks out before the

end of the planning horizon) which is increasing in p. For p1 < p′ ≤ p ≤ pmax the objective

is given by, p
(
β̂0

t + β̂1
t p
)

(T − t + 1). This is true because for these prices the firm does not

stock out early, and each period’s revenue is simply the product of price and demand. Now

notice the above function is decreasing for all p > p1. Furthermore, p′ satisfies

p′
(
β̂0

t + β̂1
t p′
)

(T − t + 1) = ctp
′.

We conclude that p′ is the optimal solution in this case. Notice that solving for p′ = p∗ one

obtains,

p′ =
ct − (T − t + 1) β̂0

t

(T − t + 1) β̂1
t

.

We note that in the deterministic case the policies given by the one and five-dimensional

DPs are equivalent. This follows since in the deterministic case εs = 0 and as a result, the

future demand parameter estimates are not affected by the current pricing decision. Hence,⎡⎢⎣ β̂0
s+1

β̂1
s+1

⎤⎥⎦ =

⎡⎢⎣ β̂0
s

β̂1
s

⎤⎥⎦ . Therefore, the five-dimensional DP can be reduced to the following
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three dimensional DP,

JT

(
cT , β̂0

T , β̂1
T

)
= max

pT ∈P
pT min

{(
β̂0

T + β̂1
T pT

)+
, cT

}
for s = t, . . . , T − 1 :

Js

(
cs, β̂0

s , β̂1
s

)
= max

ps∈P
ps min

{(
β̂0

s + β̂1
sps

)+
, cs

}
+Js+1

(
cs − min

{(
β̂0

s + β̂1
sps

)+
, cs

}
, β̂0

s , β̂1
s

)
.

Moreover, notice that the one-dimensional DP policy in the deterministic case is given by,

JT (cT ) = max
pT ∈P

pT min
{(

β̂0
t + β̂1

t pT

)+
, cT

}
for s = t, . . . , T − 1 :

Js(cs) = max
ps∈P

ps min
{(

β̂0
t + β̂1

t ps

)+
, cs

}
+Js+1

(
cs − min

{(
β̂0

t + β̂1
t ps

)+
, cs

})
.

When the firm uses the five-dimensional DP policy, since in the beginning of period

t,
(
β̂0

s , β̂1
s

)
=
(
β̂0

t , β̂1
t

)
, for all s = t, . . . , T , it follows, just like in the case of the one-

dimensional DP policy, that the current parameter estimates are valid over all future periods.

The DPs solved for both policies are in that case equivalent. The only difference is that

the five-dimensional DP explicitly treats β̂0
t and β̂1

t as (constant) states while the one-

dimensional DP implicitly treats β̂0
t and β̂1

t as (constant) states. This observation leads us

to conclude that the two policies are equivalent.

The Myopic Pricing Policy

Finally, we introduce the last heuristic pricing policy, the myopic pricing policy. This

policy maximizes the expected current period revenue over each period, without considering

future implications of the pricing decisions. In period t (t = 1, 2, . . . , T )

pt ∈ arg max
p∈P

pEεt

[
min

{(
β̂0

t + β̂1
t p + ε̂t

)+
, ct

}]
,

where a+ = max(a, 0). Quantity ct denotes the remaining capacity in the beginning

of period t. Clearly the myopic policy is suboptimal since it does not take into account
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the number of periods left in the planning horizon. However, when capacity is sufficiently

large the expected revenue obtained through the myopic and the one-dimensional DP policy

become the same. This follows from the observation that when capacity is sufficiently large,

both methods maximize current expected revenue. This myopic approach is optimal since

the firm does not run the risk of stocking out before the end of the planning horizon that

is, there are no future implications of the current pricing decision.

2.5 Computational Results

In the previous subsections we introduced dynamic pricing policies for revenue maximization

with incomplete demand information based on DP (one, five and eight dimensional) as well

as a myopic policy which we consider as a benchmark. We have implemented all methods

except the eight-dimensional DP, which is outside today’s computational capabilities.

We consider an example where true demand is given by dt = 60 − pt + εt, with εt = 0

initially and εt ∼ N(0, σ2), where σ = 4. The prices belong in the set P = {20, 21, . . . , 40},
the total capacity is c = 400 and the time horizon is T = 20. As we discussed in the previous

subsections we consider a linear model for estimating the demand, that is, d̂t = β̂0
t + β̂1

t pt.

We first assume a model of demand assuming that εt = 0, and we apply both the myopic

and the one-dimensional DP policies, which is optimal in this case. In order to show the

effect of demand learning we we plot in Figures 1 and 2 the least squares estimates of the

intercept β̂0
t and the slope β̂1

t . We notice that the estimates of the demand parameters

indeed tend to the true demand parameters over time.
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Figure 1: The estimate β̂0
t .

Slope Estimate Evolution
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Figure 2: The estimate β̂1
t .

In Table 1, we compare the total revenue and average price from the myopic and the one-

dimensional DP policies, over 1,000 simulation runs. In general, as we mentioned earlier,

for very large capacities both policies lead to the same revenue.
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T = 20, c = 400 Myopic 1-dim. DP

Ave (Total Revenue) 12, 194 15, 688

Std (Total Revenue) 1, 162.9 303.595

Ave(Ave Price) 30.9367 39.3595

Std (Ave Price) 2.8097 .6506

Table 1: Comparison of total revenue and average price for the myopic and the one-

dimensional DP policies for εt = 0, over 1000 simulation runs with T = 20 and c = 400.

T = 5, c = 125 Myopic 1-dim DP 5-Dim DP

Ave.(Total Revenue) 3, 884.6 4, 250.1 4, 339.3

Std (Total Revenue) 302.6 282.0 394.2

Ave.(Ave Price) 32.5 35.7 36.7

Std (Ave Price) 2.5 1.8 1.89

Table 2: Comparison of total revenue and average price for the myopic, the one-dimensional

and five-dimensional DP policies for εt ∼ N(0, 16), over 1000 simulation runs with T = 5

and c = 125.

The results of Table 1 suggest that the one-dimensional DP outperforms the myopic

policy significantly (by 28.65%). Moreover, the results become more dramatic as capacity

drops.

We next consider the case that εt ∼ N(0, 16). In Table 2, we report the total revenue

and average price from the myopic, one-dimensional DP and five-dimensional DP policies,

over 1,000 simulation runs.

The results of Table 2 agree with intuition that the more computationally intensive

methods lead to higher revenues. In particular, the one-dimensional DP policy outperforms

the myopic policy (by 9.4%), and the five-dimensional DP policy outperforms the one-

dimensional DP policy (by 2.09%). The results continue to hold for several values of the
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parameters we tested.

Overall, we feel that this example (as well as several others of similar nature) offers the

following insights.

Insights:

1. All the methods we considered succeed in estimating accurately the demand parame-

ters over time.

2. The class of DP policies outperforms the myopic policy. In addition, revenue increases

with higher complexity of the DP method, that is the five-dimensianal DP policy

outperforms the one-dimensional DP policy.

3 Pricing in a Competitive Environment

In this section, we study pricing under competition. In particular, we focus on a market

with two firms competing for a single product in a dynamic environment, in which, the

firm apart from trying to estimate its own demand, it also needs to predict its competitor’s

demand and pricing policy. Given the increased uncertainty, we use a more flexible model

of demand, in which the firm considers that its own true demand as well as its competitor’s

demand have parameters that are time varying. Models of the type we consider in this

section, were introduced in [5], and have nice asymptotic properties that we review shortly.

Specifically, the firms have total capacity c1 and c2 respectively, over a finite time horizon

T . In the beginning of each period t, Firm 1 knows the realizations of its own demand d1,s,

its own prices p1,s as well as its competitor’s prices p2,s, for s = 1, . . . , t − 1. It does not

directly observe, however, its competitor’s demand.

We assume that each firm’s true demand is an unknown linear function, where the true

demand parameters are time varying, that is, for firm k = 1, 2 demand is of the form

dk,t = β0
k,t + β1

k,tp1,t + β2
k,tp2,t + εk,t,

where the coefficients β0
k,t, β

1
k,t, β

2
k,t vary slowly with time, i.e.,

|βi
k,t − βi

k,t+1| ≤ δk(i), k = 1, 2; i = 0, 1, 2; t = 1, . . . , T − 1.
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This model assumes that demand for each firm k = 1, 2 depends on its own as well as

its competitors current period prices p1,t, p2,t, unknown parameters β0
k,t, β1

k,t, β2
k,t, and a

random noise εk,t ∼ N(0, σ2
k,t), k = 1, 2. The parameters δk(i), i = 0, 1, 2 are prespeci-

fied constants, called volatility parameters, and impose the condition that the coefficients

β0
k,t, β

1
k,t, β

2
k,t are Lipschitz continuous. For example setting δk(i) = 0, for some i, implies

that the ith parameter of the demand is constant in time (this is the usual regression con-

dition).

Firm 1’s objectives are to estimate its own demand, its competitor’s reaction and finally,

set its own prices dynamically in order to maximize its total expected revenue.

The results in [5] suggest that if the true demand is Lipschitz continuous, then the linear

model of demand with time varying parameters we consider will indeed converge to the true

demand. Moreover, the rate of convergence is faster than other alternative models. While

we could use this model in the noncompetitive case of the previous section, it would lead

to very high dimensional DPs that we could not solve exactly.

The remainder of this section is organized as follows. In Section 3.1, we present the

firm’s demand estimation model. In Section 3.2, we present a model that will allow the firm

to predict its competitor’s prices but also a model that the firm performs to set its own

prices. Finally, in Section 3.3 we present some computaional results.

3.1 Demand Estimation

Each firm at time t estimates its own demand to be

D̂k,t = d̂k,t + εk,t, k = 1, 2

where d̂k,t is a point estimate of the current period demand and εk,t is a random noise for

firm k = 1, 2. The point estimate of the demand in current period t is given by d̂1,t =

β̂0
1,t + β̂1

1,tp1,t + β̂2
1,tp2,t and d̂2,t = β̂0

2,t + β̂1
2,tp1,t + β̂2

2,tp2,t. The parameter estimates are based

on the price and demand realizations in the previous periods.

We assume that the parameter estimates β̂1
1,t and β̂2

2,t that describe how each firm’s own

price affects its own demand, are negative. This is a reasonable assumption since it states
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that the demand is decreasing in the firm’s own price. Moreover, the parameter estimates

β̂2
1,t, β̂1

2,t are nonnegative, indicating that if the competitor sets for example, high prices

they will increase the firm’s own demand.

The firm makes the following distributional assumption on the random noise for each

firm’s demand,

εk,t ∼ N(0, σ̂2
k,t), where k = 1, 2,

and the demand variance estimated for each firm is,

σ̂2
1,t =

∑t−1
τ=1

(
d1,τ − β̂0

1,t − β̂1
1,tp1,τ − β̂2

1,tp2,τ

)2

t − 4

σ̂2
2,t =

∑t−1
τ=1

(
d2,τ − β̂0

2,t − β̂2
2,tp2,τ − β̂1

2,tp1,τ

)2

t − 4
.

Notice that for the same reason as in the noncompetitive case, the variance estimates σ̂2
k,t

for k = 1, 2, have t − 4 degrees of freedom.

For each firm k = 1, 2 we denote by β̂k = (β̂k,1, β̂k,2, ..., β̂k,t−1), where β̂k,t = (β̂0
k,t, β̂

1
k,t, β̂

2
k,t).

In order to estimate its own demand Firm 1 solves the following problem.

minimize
β̂1

t−1∑
τ=1

|d1,τ − (β̂0
1,τ + β̂1

1,τp1,τ + β̂2
1,τp2,τ )|

subject to |β̂i
1,τ − β̂i

1,τ+1| ≤ δ1(i), i = 0, 1, 2, τ = 1, 2, ..., t − 2

β1
1,τ ≤ 0, β2

1,τ ≥ 0.

Note that we impose the constraint that the parameters are varying slowly with time. This

is reflected in the numbers δ1(i). Note that this problem can be transformed to a linear

optimization model, which makes it attractive computationally.

Let (β̂i
1,τ )∗, i = 0, 1, 2, τ = 1, ..., t − 1 be an optimal of this problem. Firm 1 would like

now to make an estiamate for the parameters (β̂0
1,t, β̂

1
1,t, β̂

2
1,t). We propose the estimate:

β̂i
1,t =

1
N

t−1∑
l=t−1−N

(β̂i
1,l)

∗, i = 0, 1, 2,

that is the new estimate is an average of the estimates of the N previous periods. In

particular, if we choose N = 1, the new estimate is equal to the estimate for the previous

period.
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3.2 Competitor’s price prediction and own price setting

In order for Firm 1 to set its own prices in current period t, apart from estimating its own

demand, it also needs to predict how its competitor (Firm 2) will react and set its prices in

period t. The information available to Firm 1 at each time period, includes, apart from the

realizations of its own demand, also the prices each firm has set in all the previous periods.

We will assume that Firm 1 believes that its competitor is also setting prices optimally.

In this case, Firm 1 is confronted with an inverse optimization problem. The reason for

this is that Firm 1 tries to guess the parameters of its competitor’s demand (by assuming

it also belongs to a parametric family with unknown parameters) through an optimization

problem that would exploit the actual observed competitor’s prices. In what follows, we

will distinguish between the uncapacitated and the capacitated versions of the problem.

Uncapacitated Case

As we mentioned, we assume that Firm 1 believes that Firm 2 is also a revenue maximizer

and, as a result, solves the optimization problem,

max
p2,τ

p2,τ .(β̂0
2,τ + β̂1

2,τp
1
1,τ − β̂2

2,τp2,τ ), τ = 1, ..., t.

This problem has a closed form solution of the form

p̂2,τ =
β̂0

2,τ + β̂1
2,τp1

1,τ

−2β̂2
2,τ

, τ = 1, ..., t.

Price p1
1,τ denotes what Firm 1’s estimate is of what Firm 2 believes for Firm 1’s pricing.

Examples of such estimates include: p1
1,τ = p1,τ , p1

1,τ = p1,τ−1, or an average of price

realizations from several periods prior to period τ .

Firm 1 will then estimate the demand parameters for Firm 2 by solving the following

optimization problem

min
β̂2

t−1∑
τ=1

∣∣∣∣∣p2,τ − β̂0
2,τ + β̂1

2,τp1
1,τ

−2β̂2
2,τ

∣∣∣∣∣
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subject to |β̂i
2,τ − β̂i

2,τ+1| ≤ δ2(i), i = 0, 1, 2, τ = 1, 2, ..., t − 2,

β̂1
2,τ ≥ 0, β̂2

2,τ ≤ 0.

As in the model for estimating the current period demand for Firm 1, δ2(i), i = 0, 1, 2,

are volatility parameters that we assume to be prespecified constants. The solutions (β̂i
2,τ )∗,

i = 0, 1, 2, of this optimization model allow Firm 1 to estimate its competitor’s current

period demand by setting:

β̂2,t =
1
N

t−1∑
l=t−1−N

(β̂2,l)∗.

Myopic Own Price Setting Policy

After the previous analysis, Firm 1’s own price setting problem follows easily. We assume

that Firm 1 sets its prices by maximizing its current period t revenues. That is,

max
p1,t

p1,t.(β̂0
1,t − β̂1

1,tp1,t + β̂2
1,tp̂2,t).

This optimization model uses the estimates of the parameters β̂i
1,t, i = 0, 1, 2, that we

described in Firm 1’s own demand estimation problem, as well as the prediction of the

competitor’s price p̂2,t =
β̂0
2,t+β̂1

2,tp
1
1,t

−2β̂2
2,t

. Notice that this latter part also involves the estimates

of the demand parameters β̂i
2,t, i = 0, 1, 2 arising through the inverse optimization problem

in the competitor’s price prediction problem.

Capacitated Case

We assume that both firms face a total capacity c1 and c2 respectively that they need to

allocate in the total time horizon. As before, Firm 1 makes the behavioral assumption that

Firm 2 is also a revenue maximizer. Using the notation x+ = max(0, x), the price prediction

problem that Firm 1 solves for predicting its competitor’s prices becomes

p̂2,t = arg max
p∈P2

p min

{(
β̂0

2,t + β̂2
2,tp2,t + β̂1

2,tp
1
1,t

)+
, c2 −

t−1∑
τ=0

(β̂0
2,τ + β̂2

2,τp2,τ + β̂1
2,τp1

1,τ )
+

}
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As in the uncapacitated case, p1
1,τ denotes Firm 1’s estimate of what Firm 2 assumes for

Firm 1’s own pricing. Examples include: p1
1,τ = p1,τ , or p1,τ−1, or considering an average of

the prices Firm 1 sets in several previous periods. We can now estimate Firm 2’s demand

parameters through the following optimization model

min
t−1∑
τ=1

|p2,τ − p̂2,τ |

subject to |β̂i
2,τ − β̂i

2,τ+1| ≤ δ2(i), i = 0, 1, 2, τ = 1, 2, ..., t − 2

β̂1
2,τ ≥ 0, β̂2

2,τ ≤ 0,

where p̂2,t ∈ arg maxp∈P2 p min
{(

β̂0
2,t + β̂2

2,tp + β̂1
2,tp

1
1,t

)+
, c2,t

}
.

Let (β̂i
2,τ )∗, i = 0, 1, 2, τ = 1, ..., t− 1 be optimal solutions to this optimization problem.

As before, Firm 1 estimates its competitor’s current period demand parameters as

β̂i
2,t =

1
N

t−1∑
l=t−1−N

(β̂i
2,l)

∗, i = 0, 1, 2.

Myopic Own Price Setting Policy

After computing its own and its competitor’s demand parameter estimates and estab-

lishing a prediction on the price of its competitor for the current period, Firm 1 is ready to

set its own current period price. As in the uncapacitated case, Firm 1 solves the current

period revenue maximization problem, that is,

p1,t ∈ arg max
p∈P

[
p min

{(
β̂0

1,t + β̂1
1,tp + β̂2

1,tp̂2,t

)+
, c1,t

}]
,

where c1,t = c1−∑t−1
τ=1 d1,τ is Firm 1’s remaining capacity in period t. Moreover, the demand

parameters β̂i
1,t = 1

N

∑t−1
k=t−1−N (β̂i

1,k)
∗, β̂i

2,t = 1
N

∑t−1
l=t−1−N (β̂i

2,l)
∗, i = 0, 1, 2, and finally,

the estimates of the competitor’s prices are p̂2,t ∈ arg maxp∈P2 p min
{(

β̂0
2,t + β̂2

2,tp + β̂1
2,tp

1
1,t

)+
, c2,t

}
.

3.3 Computational Results

We consider two firms competing for one product. The true models of demand for the two

firms respectively are as follows:

d1,t = 50 − .05p1,t + .03p2,t + ε1,t

29



Firm 1 Firm 2 1 Avg(Rev) 2 Avg(Rev) 1 Std(Rev) 2 Std(Rev)

Opt Rand 3, 126, 000 2, 909, 200 70, 076 109, 790

Rand Rand 2, 638, 800 2, 616, 900 63, 112 61, 961

Match Rand 2, 602, 700 2, 603, 200 117, 470 123, 070

Opt Match 3, 791, 100 3, 779, 400 177, 540 197, 370

Rand Match 2, 603, 200 2, 602, 700 123, 070 117, 470

Opt Opt 3, 757, 700 3, 804, 700 70, 577 129, 530

Rand Opt 2, 909, 200 3, 126, 000 109, 790 70, 076

Match Opt 3, 779, 400 3, 791, 100 197, 370 177, 540

Table 3: A comparison of revenues under random, matching, optimization based pricing

policies.

d2,t = 50 + .03p1,t − .05p2,t + ε2,t

where the ε1,t, ε2,t ∼ N(0, 16). Moreover, the prices for both firms range in the sets P1 =

P2 = [100, 900], the time horizon is T = 150 and finally we assume that p1,1 = p2,1 = 500.

Finally, we assume an uncapacitated setting.

We compare three pricing policies: (a) random pricing, (b) price matching, and (c) op-

timization based pricing using the methods we outlined in this section. A firm employing

the random pricing policy chooses a price at random from the feasible price set. In partic-

ular, we consider a discrete uniform distribution over the set of integers [100, 900]. A firm

employing the price matching policy sets, in the current period, the price its competitor

set in the previous period. Finally, a firm employing optimization based pricing first solves

the demand estimation problem in order to estimate its current period parameter estimates

using linear programming, supposes its competitor will repeat its previous period pricing

decision, and then uses myopic pricing in order to set its prices. In Table 3, we report the

revenue from the three strategies, over 1000 simulation runs.
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In order to obtain intuition from Table 3, we fix the strategy the competitor is using,

and then see the effect on revenue of the policy followed by Firm 1. If Firm 2 is using the

random pricing policy, it is clear that Firm 1 has a significant increase in revenue by using

an optimization based policy. Similarly, if Firm 2 is using a matching policy, again the

optimization based policy leads to significant improvements in revenue. Finally, if Firm 2

is using an optimization based policy, then the matching policy is slightly better than the

optimization based policy. However, given that the margin is small and given the variability

in the estimation process, it might still be possible for the optimization based policy to be

stronger. It is thus fair to say, that at least in this example, no matter what policy Firm 2

is using, Firm 1 seems to be better off by using an optimization based policy.

4 Conclusions

We introduced models for dynamic pricing in an oligopolistic market. We first studied mod-

els in a noncompetitive environment in order to understand the effects of demand learning.

By considering the framework of dynamic programming with incomplete state information

for jointly estimating the demand and setting prices for a firm, we proposed increasingly

more computationally intensive algorithms that outperform myopic policies. Our overall

conclusion is that dynamic programming models based on incomplete information are ef-

fective in jointly estimating the demand and setting prices for a firm.

We then studied pricing in a competitive environment. We introduced a more sophis-

ticated model of demand learning in which the price elasticity is a slowly varying function

of time. This allows for increased flexibility in the modeling of the demand. We outlined

methods based on optimization for jointly estimating the Firm’s own demand, its com-

petitor’s demand, and setting prices. In preliminary computational work, we found that

optimization based pricing methods offer increased revenue for a firm independently of the

policy the competitor firm is following.
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